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Quantization of constrained systems and path integrals in 
curvilinear supercoordinates 

S V Shabanov 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Po Box 19, 
Moscow, USSR 

Received 6 February 1990 

Abstract For systems with constraints the issue of non-commutability of quantization and 
elimination of non-physical variables is studied in the framework of path integrals (Pie). 
It is shown that one should take into consideration the curvilinearity of physical variables 
and their phase space reduction in order to provide a one-to-one correspondence between 
the Dirac scheme and PI description. The latter leads to a modification of  the standard PI 

(P! wit!! B g 2 - g ~  cocditioa). ,A. gcnerz! P! dcriv~!io!! is s??ggcstcd for ?.cy method of pic!&g 
out physical variables which corresponds to the Dirac scheme. 

1. Introduction 

It is well known that elimination of non-physical variables in gauge theories and 
quantization do  not commute (Christ and Lee 1980, Prokhorov 1982b, Ashtekar and 
Horowitz 1982, Isham 1986). In other words, a quantum theory described by the Dirac 
scheme (Dirac 1965) can differ from that in which non-physical degrees of freedom 
are eliminated before quantization. However, the standard method of path integral 
(PI) construction (Faddeev 1970, Faddeev and Slavnov 1980) corresponds only to the 
last method since, in this way, non-physical momenta and coordinates are eliminated 
from the classical action with the help of constraints and supplementary conditions, 
respectively, and the phase space of physical degrees of freedom is a priori assumed 
to be an even-dimensional Euclidean space. 

The difference between these quantization methods comes from the curvilinearity 
of physical variables (Prokhorov 1982a,b) (it is known that the application of 
operations of quantization and introduction of curvilinear coordinates in a different 
order to a classical theory give different quantum theories), on the one hand, and from 
their phase space reduction appearing because of a gauge symmetry (Prokhorov 1982b, 
Prokhorov and Shabanov 1989), on the other hand. A modification of PIS when a 
physical phase space is reduced was shown in Prokhorov and Shabanov (1989) and 
Shahanov (1989a, b, c, 1991). Other examples of the ‘quantum-dynamical’ phase space 
reduction were given by Dunne el a/ (1989). 

The present work I s  devoted to the consideration of a PI form corresponding 
uniquely to the Dirac quantization scheme. It turns out that a connection exists between 
a PI form in curvilinear coordinates (section 2.3) and PIS  for gauge theories containing 
both boson and fermion degrees of freedom. Existence of fermions in a theory causes, 
in PI derivation on physical superspace, some specific difficulties since one cannot 

U ~ U ~ - ~ ~ ~ U ~ Y I ~ U ~ I ~ Y Y +  1bfuj.m 0 iYYi iOP Wbiisning i r d  i i99 
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decrease the number of anticommuting variables describing fermions by gauge transfor- 
mations (section 4).  In section 5 it is shown that taking into consideration the cur- 
vilinearity of physical variables and their phase space reduction, we may explicitly 
define the gauge-invariant kernel of the evolution operator via PI$ .  A mathematical 
reason for this is also presented in this section. In conclusion we suggest a general 
method for PI construction corresponding to the Dirac quantization scheme for an 
arbitrary choice of physical variables. It should be remembered 'that invariant and 
non-invariant means of choosing physical degrees of freedom exist. The first corre- 
sponds to the introduction of gauge-invariant variables. However, a complete set of 
gauge invariants is not always known, so we are forced to use the second method when 
physical variables are separated by supplementary conditions from initial variables, 
i.e. by gauge fixing. In the method suggested below, we show how one should take 
into account the curvilinearity of physical variables and their phase space reduction 
in a non-invariant way of separating them for the P I  deviation. 

2. pis in curvilinear coordinates on superspace 

Consider a quantum mechanical system containing boson degrees of freedom as well 
as Grassman ones. We take the Hamiltonian as follows: 

H =;pP:+ V(X, ++, +) (2.1) 

where[x,,,pb]=i6,,(a,b=l,2 ,..., M ) a n d [ + t , ~ ~ ] + = S , ( a , p = l , Z  , . . . ,  N).The  
operator algebra may be realized in a space of functions on superspace @ = @(x, $) = 
@(Q), Q =  (x, 6) ($ is complex conjugated to +) if 

Here and below all derivations of Grassman variables are left. The scalar product 
under which we define Hermitian conjugated operators has the form (Berezin 1966) 

(a&)= dx d $ d +  e-'%(Q)@AQ) (2.3a) 

where the integral is taken over the whole R'. In accordance with ( 2 . 3 ~ )  the unit 
operator kernel (QIQ') has the form 

I Q ~ ( Q ) & ~ ( Q ' ) = S ( Q ,  @)=s(x-x ' )e** '  (2.36) 
E 

where @ E  are eigenfunctions of Hamiltonian (2.1). 
In the general case the change of variables is defined by a function on superspace 

Q = Q(q), q = (y ,  f ) .  However, we shall consider special forms of Q, which will be 
enough for the application of gauge theories. Introduce the new variables 

X" = X A Y  1 *m = %@& (2.4) 

where O E S U ( N )  and R = n ( y ) .  Then d Q = A d q  and JJaQ=A-"a/Jq. Here A;= 
aQ'JJq', i, j = ( a ,  a ) .  After some calcnlations we get from (2.4) 
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right-hand sides coincide too. Indeed, let us change Q and Q' in (2.36) by expressions 
(2.4) and assume y e R M ,  y ' e  K, then 

S ( Q ,  e) = E  [ P ( Y ) P ( W - " ' ~ ( Y  -;Y') exp FfZ. (2.126) 

The equality follows from the rule of changing an argument of M-dimensional S- 
function and the definition of f T  = a+(;y')a(y') (we may change a t ( ~ )  to a + ( ; ~ ' )  
with exp t&' in front of S(y - Cy')). 

Let us turn now directly to the PI derivation. The kernel of the infinitesimal evolution 
operator is 

s 

&(q, 4')=[1-iaH(y, F, Ji)l(qIq') (2.13) 

where H is given by (2.6) and s+O. We rewrite kernel (2.120) as follows: 

(2.14) 

where y = p(y) ,  y"= y(y") and 

Q ( q " , 4 ' ) = 1  S(q",f*Q'). (2.15) 

Then, we use the representation of &function S ( y ) = ( 2 ~ ) - ~  JdpeiP" in (2.14) and 
substitute (2.14) into (2.13). For the calculation of the action of H on S ( q ,  4") one 
should take into consideration a non-commutability f a n d  J i  and also use the equality 

Ja  ' gUh(Y)Jd(Y -Y") = k" ' ( (Y")JoJh -J,g""(y")J,)S(y-y") (2.16) 

S' 

where a, =ajay.. Tius  we find, with an accuracy of O(E') ,  

(2.17) 

(2.18) 

and the effective Hamiltonian has the form 

H'%, q, 4") = Hdp, q, 4")+ V ( q ,  4")+ Vq(p ,  q, 4'") (2.19) 

H,=f(p,+T,)g"h(y")(phfTb) (2.20) 

where Grassman variables f" = 5" stand instead of a,- in f f a ;  ? follows from V if we 
carry all operators a,- to  the right and then change them by Grassman variables f": 
and the magnitude 

1 Vq= V,(y")+; J.g"h(y")(pb + f f b )  - f g " b ( y " ) ~ J a , n ' ( y " ) J ~ a ( y " ) f "  (2.21) 

is the quantum correction to the potential. It takes into account the non-commutability 
of operators in the kinetic energy operator. If we restore the dependence on h, then 
V,-  h 2  and other terms in (2.21) -h. This shows their connection with the operator 
ordering (see the review by Prokhorov (1982a) and references therein). When E tends 
to zero, we can replace y-y" by j " ~  with an accuracy of O(s2) .  
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To obtain the evolution operator kernel for a finite time, we must find the formula 
for iterations of infinitesimal kernels (2.17). By definition (2.8) we write 

U2,(q, 4')= d y " d ~ d ( " I L i r e ~ F 2 "  U,(9,4")Ue(q", 4'). (2.22) I, 
Transformations (2.22) are cumbersome enough. However, we may easily control t h e y  
if we take into account that their main sense is to carry to the right the operator Q 
being between two U:' in (2.22) (see (2.17)). In this way we would like to represent 
the final formula as (2.17) where E + 2.5 and 

U::(% 4') = / dy, d& d5, e-sisiU:"(q, 4 d U 3 9 , ,  4'). (2.23) 

If into (2.22) we place expression (2.17) instead of the first U,, the integration is 
carried out over the right argument of the kernel Q and over the left apument of the 
second U, entering into (2.22). Let us calculate, at first, the action of Q from the left 
on the function @. We have in accordance with (2.15) 

& ( q ) = j K  d y ' d ~ d 5 ' e ~ P ~ Q ( q , q ' ) @ ( q ' ) =  d y ' x  8(y-iy')@(y',@s). (2.24) 

To take the integral over y', we rearrange Zs and j K  and change integration variables 
z = iy'. In the general case, i is not a linear transformation, i.e., iy = s(y) is a certain 
function. So, 

I, s 

1 
& ( 9 ) = ~  eK(i-lY)-@(i-'y, ify). (2.25) 

S JSY) 

Here J, = D(iy)/D(y)  is Jacobian, 

(2.26) 

Apparently, the measure d x = d x ( y )  is invariant under the group S hence from the 
equality dx($y) = dx(y) it follows that 

A C Y )  = (JAY))r1P(Y). (2.27) 

Using the property (2.27) and fs = e-, with (2.25) we can take the integrals over y", 
p and c in (2.22): 

Y G K  
y G K. e K ( y ) =  o r' 

(2.28) dYi dgi d5, e - ~ c  ' hU:"(9,41) x P ! &  G Y d  ~ S * 9 , ,  4'). 
S 

U2s(q, 4') = J- ( p I L , ) 1 / 2  

By construction, 

U 3 * 9 , 4 ' ) =  U.(9,4'). (2.29) 

Indeed, since the initial Hamiltonian (2.1) (or (2.61, which is the same) is invariant 
under S*(Q(C*q)= Q(9)!).  by definition (2.13) we conclude that (2.29) follows from 
the equality (s"919') =(9!9 ' ) ,  which must take place in accordance with definition 
(2.12a) and the parity (2.11). Of course, we may directly prove the symmetry property 
of the unit operator kernel under S* making calculations like (2.24) and (2.25). The 
result of the action of kernel (2.12a) from the left on the function @ coincides with 
the right-hand side of (2.25) if the factor (JS(y))-' is omitted. Thus, the function 
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&q)=X.,.e,(Cyy)@(S**q) is invariant under S*. If Q belongs to the Hilbert space of 
the theory, i.e. it is a linear combination of q E ( q ) ,  then @(s**q) = @ ( q ) .  So, the equality 
6 = @ foIIows from 

1 S,(s*y)= 1. (2.30) 

Now we can see from (2.29) and (2.30) that the summation over S* in (2.28) disappears. 
After substituting (2.17) into (2.28) we find the required expression for U,, coinciding 
with (2.17) if E + ~ E ,  and U;': is defined by (2.23). 

Now, clearly, all iterations of U, are reduced to iterations of U:". On the other 
hand, iterations of the kernel U:" give the standard finite-dimensional approximation 
of PIS (Feynman and Hibbs 1965) for the theory with Hamiltonian (2.19). Thus we get 
for a finite time interval 

S 

where the kernel U:" has the standard PI form 

(2.31) 

(2.32) 

Here y =f(f(  t ) ( ( t )  + f ( O ) ( ( O ) )  takes into account the standard initial conditions in pis 

containing Grassman variables (Faddeev and Slavnov 1980) f (  t) = f and ((0) = 6". 
Moreover, y( t) = y and y(0) = y" are initial conditions for boson variables, and 

(2.33) 

Note that the measure p (Jacobian) is not contained in the PI measure, but it stays as 
a factor both at initial and finite points of the transition amplitude. If we omit the 
dependence of the theory on Grassman degrees of freedom, the boson PI in curvilinear 
coordinates appears for which the recipe of construction was suggested by Prokhorov 
(i984j (see ais0 his review [Prokhorov iYS2a)j. 

The main difficulty appearing in the PI derivation in curvilinear coordinates is that 
a physical region of values for new variables is reduced hM + K c RM. Moreover 
eigenvalues of some canonical momenta become discrete (e.g. the angular momentum, 
see section 3), i.e. integration over them is replaced by summation. 

We have got over these difficulties by using the analytical continuation of the unit 
operator kernel (2.12a) in the PI derivation. We have found that the integration in PIS 

can be carried out over the total phase space R'ORM; however, after calculation of 
a transition amplitude we must symmetrize it with respect to the group S* in accordance 
with (2.31). 

3. Example: two-dimensional SUSY oscillator 

In this short section we give a simple illustration of general formulae of section 2. 
Consider a two-dimensional SUSY oscillator. Its Hamiltonian is 

H = -+A +fx: + JIiJI. - 1 a = 1,2. (3.1) 
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Let us study states of this oscillator with a fixed total angular momentum, i.e. with a 
total angular momentum of bosons and fermions. For this we introduce the generalized 
polar coordinates 

x, = r cos 0 x2 = r sin 0 $a = e'"(a. (3.2) 

In this case p = r, gab = diag(1, rF2), P ,  = p ,  = -ir-"2a , 0 r"' 1s . the Hermitian momen- 
tum operator for a radial degree of freedom, P2 = Pa = -idn + (:to is the angular 
momentum of a boson (a total angular momentum is -iJg) and V q = - i r - 2 .  The 
Hamiltonian in coordinates (3.2) is defined by (2.6). 

To get the PI, one should find a group S*. The structure of the group S for polar 
coordinates was discussed in section 2 where it was found that K = W2\S is the strip 
r > 0, 8 E LO, 2 ~ ) .  So, fT should only be calculated. Apparently, for $0 = 0 + 2 m ,  $r = r 
we have T, = and for f8  = 8 + n, $r = - r  the equality 'f& = -5. takes place. Thus, 
the operator Q has the form 

Q(q.  4')= Ql(% e ' )a(r ,  r')  exp $Ab+ Ql(8, e'+ n ) S ( r + r ' )  exp(-&b) (3.3) 

where 

(3.4) 

The PI is obtained from (2.31). 

4. A simple model with a gauge symmetry 

Here we show the connection between the description of dynamical systems in cur- 
vilinear coordinates and gauge-invariant description of gauge models. Consider a 
mechanical model with the SO(3) gauge group and with the Lagrangian 

L=f(D,x)2+i$tD,JT- V(x, $+,$) (4.1) 

where x E R', $ is a three-dimensional complex Grassman vector, D, = a, + y, y is a 
real 3 x 3 antisymmetric matrix. Lagrangian (4.1) is invariant under gauge transforma- 
tions 

x + R x  $+W y -, nyn'+na,n'. (4.2) 

Let us turn to the Hamiltonian formalism. Canonical momenta are n = J L / a y  = 0, 
Here R = Cl( 1 )  E S0(3), and we assume also that V is gauge invariant. 

p =aL/ax = D,x and 

(4.3) J L  0 71 -;=- a L  i$+. 
* - a *  n**=-= a$+ 

Obviously, T = O  and (4.3) gives primary constraints. Note, (4.3) are the second-class 
constraints (Dirac 1965) which appear always since usual Lagrangians for fermions 
are linear in velocities. To eliminate the second-class constraints, we replace the Poisson 
brackets (a definition of the Poisson brackets for Grassman variables was given by 
Martin (1959)) by Dirac brackets (Dirac 1965). We take $+ and $ as new canonical 
conjugate variables (Martin 1959), and their Dirac brackets are 

{$:, $dD = #tr), = -isob (4.4) 
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a, b =  1,2 ,3 .  The momenta T* and T$+ are eliminated from the theory by using 
constraints (4.3). The Hamiltonian of the system has the form 

H = i p t +  V(x,JI', JI)-pyx-iJI+y*. (4.5) 

Put y,h=YcEohc, where Eobc is a completely antisymmetric tensor, 
nab = T&,~. So, the secondary constraints (Dirac 1965) are 

1, and also 

{To, H } = & ~ h c ( P b X ~ + i ~ r h f ~ ~ ) ) G ~ = o .  (4.6) 

Constraints (4.6) are the first-class constraints {Ga ,  Gh},, = -E.~?G~,  {Ga ,  H } "  = 
E ~ ~ ~ Y ~ G ~  (Dirac 1965). 

After quantization, when all canonical variables are replaced by operators and 
{,)"+-i[,] ( [ , I  is a commutator for bosons and an anticommutator for fermions), 
constraints (4.6) pick out the physical subspace of states: 

GeI@pd=O I q d E  XPh. (4.7) 
(The constraints T # ) ~ ~ ) = O  are easily solved, and we shall not turn our attention to 
them below.) To construct Xph, we use the representation of second quantization 
ah=  l / f i (xh+ipa) .  By definition, the vacuum is able)= JIhlO)=O. We find ~ . ~ ~ p ~ x ~ =  
-iEah,ah'a, and 10) E XPh. The operators of the constraints generate SO(3) rotations of 
the vectors a+ and JI', hence, I Q p h )  may be obtained by action on 10) of all combinations 
of a+ and JI' which are invariant under SO(3) transformations. The basis for these 
polynomials of at and *+ is defined by invariant tensors of the group S0(3) ,  Sa,, and 

(Barut and Raczka 1977), i.e. we may obtain any IQph) acting on (0) by the operators 

b; = a:.: b;= Eoh&:$ia: (4.8a) 

fT=ai$h '  f+- 2 -&ab< *"$' Y h * c .  + (4.8b) 

The operators (4.8a) are 'boson', i.e. they commute, and the operators (4.86) correspond 
to physical excitations of a fermion sector, i.e. they anticommute. 

Now we return to the PI derivation. Christ and Lee (1980) and Prokhorov (1982b) 
have shown for the model (4.1), but without fermions, that the elimination of non- 
physical variables and subsequent quantization lead to the results contradicting the 
Dirac scheme. The main point is as follows. Put, for example, V=$x' (fermions are 
absent), then the basis in XDh is b:"IO), n =0,1,. . . (Prokhorov and Shabanov 1989), 
i.e. the oscillator spectrum is E, = 2 n  +t. Now we eliminate non-physical variables 
before quantization. Since the constraints G. = 1, = E . ~ ~ ~ ~ x ~  = 0 are projections of the 
angular momentum of a boson, we conclude that angles of the spherical coordinate 
system x +  (r, 0, 'p) are non-physical variables (their canonical momenta are p, = -13 = 
0, p R  =sin 'p I, -cos 'p I, = 0). So, the classical physical Hamiltonian depending on  
physical variables r and p, =p.x,/r is i ( p : + r 2 ) .  It coincides with the Hamiltonian of 
a one-dimensional oscillator, the quantization of which ( p , +  ia,) gives the spectrum 

On the other hand, as has been noted in section 1, a standard method of PI 
construction corresponds to a quantum theory obtained from an initial classical one 
just by eliminating non-physical degrees of freedom before quantization. From this 
point of view it is interesting to find a PI form which corresponds to the Dirac 
quantization scheme. With this purpose we, at first, quantize the theory, then eliminate 
non-physical variables and construct the quantum Hamiltonian in Xp,. Finally, using 
it we derive a PI for the evolution operator kernel in XDh. 

E" = II +i. 
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Note, to eliminate non-physical variables in a quantum theory, one should introduce 
curvilinear coordinates. Indeed, if we define new variables so that some of them get 
shifts (non-physical variables) and others do  not change under gauge transformations 
(physical variables) constraints become diagonal, i.e. they are linear combinations of 
momentum operators conjugated to non-physical variables. It then follows that con- 
straints are generators of gauge transformations, and momentum operators are gen- 
erators of translations. However, if gauge transformations are isotopic rotations, we 
cannot diagonalize constraints without introducing curvilinear coordinates. 

sin 0 cos 'p -sin Q -cos 8 cos 'p 

On this basis, we define new variables 

(4.9) 1 x =  up 
IL= ut U = sin 0sin'p cos 'p cos 0 sin 'p ~ S 0 ( 3 )  ( COS 8 0 sin 0 

where p = ( r ,  0,O) and 5 = (5.) (a = 1,2,3) .  Apparently, 0 and 'p get shifts under gauge 
transformations and r, 5, do not change (as was shown below 52,3 are not guage- 
invariant). The quantum Hamiltonian in the new variables has the form (2 .6)  if 
y . = ( r , 8 , ' p ) , ~ , = 0 , a g = L 2 , ~ ~ = s i n ~ L , + c o s e ~ , , ~ , = i ~ ~ h ~ ~ ~ ~ ~ ( 5 r = ~ / ~ ~ ) , v ~ = 0 ,  
p = r2 and the metric tensor is gob = diag(l,r-', ( r  sin t'-2). 

Straightforward calculations with the use of (2.5) show that the system of equations 
(4.7) in the coordinate representation is equivalent to 

=de@ph = o  L,@,, = 0. (4.10) 

The form of the third equation in (4.10) may easily be understood if we note that using 
gauge transformations we may always reduce 'p, 0 to zeros in x = Up; however, the 
vector p has the stationary subgroup SO(2) with the generator being a subgroup 
of the gauge group SO(3). These remaining gauge transformations do  not change p. 
but they change C2, , ;  hence, physical fermion states should be invariant under it, i.e. 
L,@,, = 0. So, the Hamiltonian in Z,,, is 

(4.11) 

A gauge symmetry in a pure fermion system was studied in Shabanov (1989a). 
Using gauge transformations we cannot decrease the number of Grassman variables. 
Nevertheless, in a classical theory the constraint of the type L,  = O  leads to that the 
time evolution of one fermion degree of freedom, for example, t2( t) is determined by 
the.time evolution of the other, i.e. (,(I). In a quantum theory the constraint L,@, ,  = 0 
is equivalent to the requirement of B,-invariance: t2,,+ -& for Qph (the latter was 
interpreted as a phase space reduction for a fermi-system (Shabanov 1989a). Thus, we 
find 

QPh(*, = *ph(r, c7 (4.12) 

where T,=s^,=diag(l ,  -1, - 1 ) ~ S 0 ( 3 ) .  Note that the only invariant of the SO(2) 
subgroup generating L, and of Z, = (1, i,) is i2&. 

Let us define now the scalar product in 8e,,. Since (4.9) is the change of variables, 
we make it like (2.8). However, as 0 and 'p are now non-physical variables, K is here 
a physical configuration space of r. The symmetry group of the change of variables 
(4.9) contains the group S = Z2 : p -+ * p  acting on physical variables. So, K = R\S is a 
semiaxis r > 0. 

1 1 H =--$ r + s ( G + G ) +  V(P,  <+, 5). 
ph 2r 
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To find the full group S* acting in a physical superspace, one should determine 
all non-trivial transformations :E SO(3) such as ?p = fp .  They are i, = diag(1, -1, - I ) ,  
&=diag(-l ,  1, -1) and &=diag(-l ,  -1.1). Since ;:= 1 (no summation over a ) ,  we 
see that the following transformations of 8, p correspond to t O ( x =  U p  = U!&): 
i,: 8+ -0, p + p + ~ ,  r +  r; &: e +  O + r r ,  p+p, r +  -r; &: o +  -@+T, p + p + ~ ,  r +  -r 
(the full symmetry group of (4.9) is obtained by adding to io the transformation 
0+B+2nn,  p+p+27rm, where m, n t H ) .  Thus, two different transformations-of 6 
correspond to every H,-transformation r + f r ,  i.e. S* - B,OH, in XDh. Moreover, 7, = i 
since both the representations of bosons and of fermions coincide. 

All physical states must be invariant under S* because S* is a subgroup of the 
gauge group SO(3). We may also prove it in another way. Consider an eigenfunction 
qE of the full Hamiltonian (without constraints) $p',+ V(x ,  $+, $) in the coordinates 
(4.9). In accordance with (2.10) pE should be invariant under the above-described 
discrete symmetry group for the change of variables (4.9). The dependence of pE on 
0 and q is determined by the spherical functions Y,,(0, p) because V ( x ,  $r+, $) = 
V ( p ,  c', 6) ( V  is gauge invariant), i.e. pE = Z R L  Y,,. So, R,", are invariant under S* 
but they form a basis in Z,,,, thus any @ is invariant under S* if @ E  Zph. Note, (4.12) 
is fulfilled automatically for R&.  Thus, we write the unit operator kernel in Zph by 
analogy with (2.120): 

1 
2 rr 

The factor f in (4.13a) follows from the equality 

(419')ph=- [S(r-  rr)(esc'+e''l') -S(r+r')(ei'z'+ei'~")]. (4.13~1) 

(4.13b) 

where r t R  and r'>O in (4.13a). Of course, (4.13a) can be obtained from 
(2.12) by averaging over 0 and q since 0 and q are non-physical variables. 

coincides with (2.13)-(2.31) if we replace H by,H,,, (see 
(4.11)) and (919') by (4.13a). A final expression has the form (2.31) where Q is given 
by the expression in the brackets of (4 .13~)  with factor f if the sign of S(r+r ' )  is 
changed, and 

The PI derivation for 

Here and p is a 
momentum canonically conjugated to r. 

A 

The main point we would like to make is that the PI contains the operator Q 
symmetrizing the transition amplitude over the group S*. It was shown (Prokhorov 
and Shabanov 1989, Shabanov 1989a, 1991) that Q appears for gauge systems when 
a physical phase space reduction takes place. On the other hand, by construction the 
kernel Uph(9, 4') (9 = (r, f ) )  is invariant under S*. Then, we state that 9 and 4' in it 
can be replaced by Q and e' respectively ( Q  = (x, q)),  and the result does not depend 
on the non-physical variables 0 and 9, i.e. 

is defined as in (2.19), matrix elements of the matrix E. are 

UYh(9, 4') = Wh(Q, 0'). (4.15) 

In other words, there exists one-to-one gauge-invariant analytical continuation of the 
kernel Uph to the total configuration space of the system. To prove this, we note that 
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any polynomial of q invariant under S* depends only on degrees of the following 
quantities 

S o b  P a  P h  7 E.hr P a g b f c  Sa, P,E Eahc&&b& (4.16) 

where p = ( r ,  0,O). We may check this directly. Since Soh and eabr are invariant tensors 
of SO(3) (Barut and Raczka 19771, we conclude that quantities (4.16) are equal 
respectively to 

X ,  2 &ob<xa&b&c X& Eabc$a&b&c (4.17) 

in accordance with (4.9). Any gauge-invariant polynomial can be formed from (4.17) 
(compare with (4.8)!). Moreover, an analytical function of q being invariant under 
the residual discrete gauge group S* has the unique analytical gauge-invariant continu- 
ation to the space of Q because polynomials form a dense set in the space of analytical 
functions. So, (4.15) is proved. Note, Q contains six degrees of freedom and a gauge 
arbitrariness has three parameters; nevertheless, the system has four physical degrees 
of freedom (see (4.8) or (4.17)). This happens because two first constraints in (4.10) 
already pick out the full Xe,,, as has been shown above. 

Thus, the explicit gauge-invariant form of the PI for a transition amplitude can be 
obtained if we take into consideration a curvilinearity of physical variables and their 
phase space reduction. Both of these main moments are usually ignored in the standard 
PI derivation for gauge theories. 

_ _ _  

5. The case of an arbitrary group and generalized Shevalley theorem 

Here we attempt to reveal a general mathematical origin of equality (4.15). It turns 
out that a statement like the Shevalley theorem (Partasarathy et a/ 1967) makes a basis 
of equality (4.15) in the general case. 

Consider the model with the Lagrangian 

L=fTr(D,x)'+iTr*+D,*-V(x,ll.',*). (5.1) 

Here D, = a ,  + [y, 1; variables x, y, $+, I) are elements of a Lie algebra X of an arbitrary 
compact gauge group G, i.e. x = x . A ;  (analogously fo~r y ) ,  + = A &  (analogously for 
#+), x i ,  y ,  are real, $<, $7 are complex Grassman variables, where A t  is an orthonormal 
basis in X: Tr AiAi = 6,, [A;, A,] =f,hAh,f,x are total antisymmetric structural constants 
and i, j ,  k = 1 ,2 , .  . . , N =dim X. Lagrangian (5.1) is invariant under gauge transforma- 
tions 

x -f nxn-1 *+n*n-' *+'n*+R-' 
y - f  nyn-'+na,n-' (5.2) 

where 
Canonical momenta, are ?r = a L/ay = 0, p = a Llai = D,x.  We describe Grassman 

degrees of freedom as in section 4, i.e. we introduce the Dirac brackets (4.4). So, the 
Hamiltonian is 

= n(t) E G, and we assume that V is invariant under (5.2). 

H = f Tr p2 + V(x,  I)+, $1 +y;G,  (5.3) 

where Gi = -{?rj, H ]  =J,,,(p,x, +i$~;$~) = O  are the secondary constraints. As one may 
check, they are the first-class constraints. After a quantization of the theory, Gi choose 
the physical subspace XDh: 

G, l@ph)=  v i l @ p h ) = o .  (5.4) 
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Our purpose is a PI construction for the evolution operator kernel of physical 
degrees of freedom. In accordance with the method suggested in section 4it  is necessary 
to introduce new curvilinear coordinates in which the constraints (5.4) are diagonalized, 
then to write the Hamiltonian in %,,, and to find (q lq ' )ph.  Finally, U7h(q, e') may be 
restored by the method of section 2. 

Determine new variables as follows (Prokhorov and Shabanov 1989) 

x = e'h e-' 4 =e'.$ e? (5.5) 
where h E H is a Cartan subalgebra in X (Helgason 1984) z E X OH. In accordance 
with (5 .2)  z are non-physical variables. Note that like (4.9) h has a stationary subgroup 
in G, the Cartan subgroup, i.e. maximal Abelian subgroup in G (Helgason 1984). We 
denote h=h.A, ( a = 1 , 2  ,..., I=dimH),z=z ,A,  ( a = l + l , / + 2  ,._., N).Themetric 
in the new variables has the block-diagonal form (Prokhorov and Shabanov 1989, 

and d, = J/Jz,. The measure is d x  = det wF dh d r  = p 2 ( h ) F ( z )  dh dz, The measure in 
a physical configurational space may be calculated explicitly (Helgason 1984): 

@ ( h ) =  n ( h , a ) = ( d e t w ) " 2  (5.6) 

Shahanov 19X9a) g'= [ ( F T m r c o F ) - l j " h )  where "'"& = hmfm& F;, =Tr()., e - = )  

a > o  

where a are positive roots of X, (h, a) = hpap. 
To find the Hamiltonian in %,,,, we calculate the constraints in new variables. 

Since z. are translated under gauge transformations generated by constraints, N - I 
constraints G, are linear combinations of id, (compare with (4.10)). The remaining 
gauge arbitrariness is connected with the Abelian one-dimensional Cartan group which 
does not change the physical boson variables h,, but changes the fermion variables .$. 
So, other I constraints must represent the equalities to zero of generators of Abelian 
transformations of fermion variables (like (4.10)). Thus, equations (5.4) are equivalent 
to 

-iJ.Qph = 0 Lm@ph %vhfz .$h@ph = 0 (5.7) 

where Cb = J/J& Note that fa@, = 0, hence [Le ,  Lo] = 0, i.e. L, are generators of the 
Cartan subgroup. 

In the quantum Hamiltonian (5.3) rewritten in the form (2.6) for coordinates (5.5) 
we carry J, and L, to the right and use (5.7) in Xph; we then get the quantum 
Hamiltonian in Xph. To simplify calculations, note that in new variables diagonalizing 
constraints, non-physical variables become cyclic (Dirac 1965), i.e. Hph does not depend 
on them. So, we may only keep an eye on terms containing h and C', 5. We have 

Here a. = J/Jh,, La = -if&&. 
To find S a n d  S*, we introduce the Cartan-Weyl basis in X (Barut and Raczka 1977): 

[e,, e- , l=a  Ch, ea l=(a ,h)em [e , ,  ~ , J=N,A+~ (5.9) 
where a > 0 are positive roots in X, e, are corresponding root vectors, h, 01 E H, Nyp 
are numbers, Nap # 0 if a+ p is a root in X. We also define an operator of the adjoint 
representation ad x(y) = [x, y ]  for all x, y E X. Any element h E H can be represented 
as h = h,w where w are simple roots of X, hence, the set { w ,  e,, e.m} gives a basis in 
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X (Cartan-Weyl basis). However, it is more convenient for us to use the orthogonal 
basis in XOH: 

(5.10) 1 1 
c, = - ( e m  + e - = ) .  J5 s = - ( e , - e _ , )  = a  

(The orthogonality is understood with respect to the scalar product in X: (x ,y)=  
Tr ad x ad y ;  for compact groups one may normalize a basis in X so that (x, y) = Tr xy 
in a matrix representation (Barut and Raczka 1977).) 

It is well known that there exists a subgroup of G in H called the Weyl group W 
which is a group of reflections and rearrangements in the root system. The group W 
is defined b y  combinations of the operators (Zhelobenko 1970) 

Tr i.rr 
s^:=exp- ad s, = exp ad c, (5.11) 

( U ,  w ) ' / 2  ( w ,  w ) ' / *  

i.e. any $ E  W is a combination of or a combination of Pi ( w  are simple roots). We 
may check that j . ' w  = -w ,  i.e. (5.11) are reflections of all simple roots, and they give 
two equivalent representations of W in H. In accordance with the definition of ad x 
and (5.5) we conclude that actions of W in H induce transformations in XOH, but 
the left-hand sides of (5.5) are invariant. Hence, transformations (5.11) are generators 
of a searched discrete group S. Indeed, the change of boson variables (5.5) exists if 
h E K t  = H \ W  (Helgason 1984) where K +  is the Weyl camera (physical configurational 
space (Prokhorov and Shabanov 1989)). In other words, S cannot contain generators 
except (5.1 l), otherwise H\Sc  Kt,  which is wrong. Note, and 5: coincide in H 
but their actions are different for Grassman elements f. 

We call the discrctc group defined by (5.1 1) in space H, = X,O H ( F e  X,, h E H )  
the generalized Weyl group W*. Since boson and fermion representations are identical, 
S* = W*. Certainly, to get a full symmetry group of the change of variables we must 
add to W* transformations of z inducing shifts e* =ei+' like Zm-shifts of 0, p in 
(4.9). Using considerations like above-suggested ones for the derivation of (4.13) (we 
denote N* the number of different elements of S* such that ŝ *q = (h ,  sf:), N* = 2 in 
(4.130)) one may write 

(5.12) 

whereqEHg,  q ' E X g O K + a n d  ~ ( ~ h ) = ( - l ) P ~ p ( h ) , S ^ E W , p r = O i f S 1 i s  rearrangement 
of roots without reflections, p. = I for including non-even numbers of reflections of 
roots. Equality (5.12) means that all physical states from XPh are invariant under the 
residual discrete gauge group W*. Moreover, the requirement of the W*-invariance 
gives automatically solutions of constraints (5.7) in the Grassman sector. To prove this 
last statement, note that CS: = 1 in H ;  however, in X these operators must be elements 
exp ad A, A E H which are equal to 1 in H. On the other hand, one may check by direct 
calculations on the basis of (5.9) that operators (5.11) are reflections with rearrange. 
ments in the real basis of X O H  (ice, sa), a > O  (Zhelobenko 1970). Then e x p a d h  
are also combinations of rearrangements and reflections. Using this we can find explicit 
forms of A. Indeed, exp(ad A)& is only *is, or *cm, as follows from (5.9) and A EH. 
So, A can take values i.rra(a, (I)-', (I runs over all positive roots, i.e. W* contains the 
operators cm =exp i r (  (I, (I)-' ad (I. Further, transformations from the Cartan subgroup 
e x p a d x  ( , y ~ H ) g e n e r a t e d b y L ,  i n ( 5 . 7 ) o n t h e b a s i s o f ( 5 . l O ) ( s = ~ ~ w + E c ~ + ~ s ~ )  
are rotations of two-dimensional Grassman vectors ( E ,  c) through the angle (x ,  (I) 



1212 S V Shabanov 

for every a>O. Invariants of these rotations are c.Fb ( 0 1  is fixed), but f-c,, =-c,, 
;,,se = -s,,, hence g.Fb are also invariant under W*, i.e. W*-invariant functions give 
solutions of (5.7) in the Grassman sector. 

Using the technique of section 2, we restore the form of UPh(q, 4') for Hamiltonian 
(5.8) and kernel (5.12). It has the form (2.31) where 

Q(q,4')  = !Y i*4') (5.13) 

Herr=fpi+ ?(h, E c ) + f L a ( w T w ) ; d L h +  V, (5.14) 

and Lo = -iJ&, V, = -&&fhnL(yrw)i;. The constructed kernel U p  turns out to 
be invariant under W* like (4.15) ( Q  symmetrizes it in W*). If fermions are absent, 
W* = W. In this case, from the Shevalley theorem (Zhlobenko 1970), every analytical 
function in H being invariant under W has the unique analytical gauge-invariant 
continuation to X. So, Uyh(h, h') = UYh(x, x ' ) .  Examples of the construction of gauge- 
invariant wavefunctions were given in Shabanov (19894 and gauge-invariant forms 
of PIS in total (i.e. including also non-physical degrees of freedom) configurational 
and phase spaces were presented in Shabanov (1989c, 1991). 

For the present system there is an analogous statement, which we call the generalized 
Shevalley theorem: every analytical function in H ,  being invariant under W* bas the 
unique analytical gauge-invariant continuation to XOX, ( Q  E XOx, if x E x, & E  x8), 
Consider an oscillator in (5.3), V(h, #+, #) = $ T r  h2+Tr 5'5- N/2. Its wavefunctions 
are pE(g) exp(-f Tr h2) where p E ( q )  are polynomials invariant under W*. Since Hph 
is Hermitian, pE(g) form a basis in the space of all W*-invariant polynomials in Hg. 
On the other hand, we may solve the quantum problem in the total Hilbert space, i.e. 
in the space of functions in XOX,. Then, eigenfunctions of the oscillator are 
PE( Q) exp(-f Tr x 2 ) ,  moreover, Xph is formed by gauge-invariant polynomials from 
&(Q) which give a basis in the space of all gauge-invariant polynomials (the total 
Hamiltonian is also Hermitian). Because V is gauge invariant, we may write in 
coordinates ( 5 . 5 )  pE(Q) = X f l  P;(q)Y,,(z) where Y,,(z) are eigenfunctions of the Lap- 
lace-Beltrami operator on a gauge group orbit formed by values of z when h is fixed. 
Clearly,p,(q)= P:(q) (Y,=constant).Then,in XPhpE(Q(g))=pE(q)= PE(q)=pE(q) 
because of the gauge invariance, i.e. between polynomials PE and pE there exists a 
one-to-one correspondence, hence it exists between pE(Q)€ Xp,, and pE(g). Since 
polynomials form a dense set in the space of analytical functions, we arrive at the 
statement of the generalized Shevalley theorem. Thus, (4.15) takes place in the general 
case. 

Note a simple consequence. Every polynomial in X, being invariant under W* is 
gauge invariant, i.e. a gauge symmetry in a pure fermion sector of a theory is equivalent 
to the discrete symmetry with respect to the generalized Weyl group W*. 

w*-s* 

6. Conclusion 

We have seen that the main points of pi derivation corresponding uniquely to the 
Dirac quantization scheme (i.e. to an explicit gauge-invariant description) are the 
curvilinearity of physical variables and reduction of both physical configuration and 
phase spaces. The latter, as has been shown, is connected with the invariance of pis 

under residual discrete gauge transformations (the operator Q in the expression of 
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UYh), and this guarantees an explicit gauge invariance of pir (the generalized Shevalley 
theorem). 

The method may be generalized to any theory with first-class constraints (i.e. to 
any gauge theory). Let independent constraints he qa which generate gauge transforma- 
tions (Pyatov and Razumov 1989). The structure of gauge group orbits in the total 
configurational space is not always known, therefore physical variables are picked out 
with the help of supplementary conditions ,y.(x) =O.  To get correspondence to the 

JI+ Tu+ where U E G,  G is a gauge group, Tu is a representation of G. Then, after 
quantization we change variables in a quantum Hamiltonian (x, $) + (0, y ,  6) where 
x = u ( S ) y ,  $ = Tu(0)5, and y satisfies supplementary conditions ,y . (y)  = O .  In this case 
constraints qa become linear combinations of derivatives alae, since 0, shift under 
gauge transformations, i.e. 8, are non-physical variables. Further, one should define 

of y ,  and find a unit operator kernel in the physical subspace of states, i.e. determine 
the measure (Jacobian) and the group S* (the group S may be found from conditions 
,y.,(;y) =0, S^EG where ? are all residual discrete gauge transformations keeping 
conditions ,yo = 0). Finally, can be restored in accordance with the above-suggested 
method. The effective-action form and S* depend on the ,y. form. However, changing 
,yo by ,yb is equivalent to a passage to other curvilinear coordinates in quantum theory 
unbreaking, however, the diagonality of quantum constraints (x = uy = u'y', ,yb(y')  = 0 
and q P . - a / ~ S .  -a lae : ) ,  hence it is a passage to a new basis in ZPh. So, the change 
of ,ye does not influence the form of the function UP" which depends only on 
gauge-invariant quantities (see (4.15)). Change of ,ya is the change in form of an entry 
of gauge-invariant quantities (compare (4.16) with (4.17), in this case ,y. = O  are 

It is necessary to say, that a quantum theory determined by the elimination of 
non-physical variables with subsequent quantization and the one found in accordance 
with the Dirac scheme are free from internal contradictions, nevertheless they can be 
different. Therefore we may consider them as two quantum versions of the same 
classical theory. However, note that in the case of a quantum gauge field theory we 
should observe an explicit Lorentz invariance in choosing physical variables. The latter 
is known to require the introduction of non-physical variables to a theory (Dirac 1967). 
Otherwise, we cannot impose supplementary conditions on operators since contradic- 
tions with commuting relations appear (Dirac 1965, 1967). Therefore the Dirac scheme 
turns out to be more preferable for formulation of a theory in the total Hilbert space 
as it is free from these contradictions. Thus, pis should be defined according to the 
Dirac quantization scheme. 

n:-..- ̂̂I-...-̂ --- I.-" .^ -I^ ^ ^  *-*, " T .̂ *L^ ̂ ^..--.-".."CA--".:-.. I-. . ,  La - A * , "  
"lld_L. DC,,G111G, ULLC ,,a> L" uu as I V I I U W > .  L S L  ,us g'aUgG L , a , I L . L u I I L I * , I u I I  I ' l W  vc *-  UA, 

B C p B x k ~  UaEi!!axiar, ix the phy:ica! subspace, i.e. ix the space ofana!ytica! f.nctiens 

x2 = x: = 0). 
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